PLATE HEAT EXCHANGERS

GWH-Series | Brazed Plate Heat Exchangers

2ND GENERATION OF HIGH PRESSURE HEAT EXCHANGERS

DESIGN & FUNCTION

Solid and compact design for extreme working conditions.

The GWH-Series are copper-brazed plate heat exchangers designed for industrial applications with pressures of up to 55 bar. Due to their solid and compact construction the units are especially suitable for applications with high mechanical and thermal loads.

They are designed for extreme working conditions, such as $\rm CO_2$ cascade systems, refrigeration, railway and marine applications.

- ► SOLID CONSTRUCTION
- ► HIGH PERMANENT PRESSURE RESISTANCE
- ► COMPACT, SPACE-SAVING DESIGN
- ► LOW WEIGHT
- ► LOW INVESTMENT COSTS

ALWAYS A SUITABLE SOLUTION AT HAND

The brazed plate heat exchangers from Kelvion offer tailor-made solutions for the widest range of application. We configure the most economically favorable model for you from the wide range of available sizes and the numerous optional features. We adapt this with individually positioned connections to meet your specific requirements.

Туре	Pressure	Dimensions				L-Dimension*	Weight*	Volume	Max. number of plates
	bar	A [mm]	B [mm]	C [mm]	D [mm]	[mm]	[kg]	(Litre/ Channel)	
GWH 220H	55	90	328	43	279	14,30+2,25xN	1,40+0,09xN	0,046	80
GWH 240H	55	90	464	43	415	14,20+2,24xN	1,80+0,13xN	0,070	80
GWH 500H	55	124	532	73	478	14,30+2,28xN	4,25+0,22×N	0,100	120
GWH 700L	55	271	532	200	460	15,70+2,34×N	10,20+0,53xN	0,230	150
GWH 700M	55	271	532	200	460	15,70+2,34xN	10,20+0,53xN	0,230	150
GWH 900H	55	271	802	161	690	13,60+2,31xN	14,40+0,80xN	0,399	300

Also available as an advanced evaporator with a special "Delta Injection[™]" distribution system for the refrigerant inlet.

GWH 500H-AE	55	124	532	73	478	14,30+2,28xN	4,25+0,22xN	0,100	120
GWH 700M-AE	55	271	532	200	460	15,70+2,34xN	10,20+0,53xN	0,230	150
GWH 900H-AE	55	271	802	161	690	13,60+2,31xN	14,40+0,80xN	0,399	300

*N = number of plates

SPECIFICATIONS

- ▶ Plate Material: Stainless steel AISI 316L / 1.4404
- Brazing Material: Copper

FEATURES

- ► Safety Chamber[™] (model 700, 900)
- ▶ Delta Injection[™] (model 500, 700M, 900)
- ► Full-Flow System[™] (model 220, 240, 500)

PERFORMANCE LIMITS

- ▶ Working temperature: -196°C to +200°C/-321°F to +392°F
- Working pressure: up to 55 bar / 798psi

APPROVAL

- ▶ PED (CE)
- ASME VIII-1

We need following information to select your optimum heat exchanger

- Required temperature range
- Flow rates or required heat load
- Maximal permitted pressure drop
- Required working conditions

The specifications contained in this brochure are intended only to serve the non-binding description of our products and services and are not subject to guarantee. Binding specifications, especially pertaining to performance data and suitability for specific operating purposes, are dependent upon the individual circumstances at the operation location and can, therefore, only be made in terms of precise requests.

www.kelvion.com